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Abstract

We study the Rayleigh-&hard stability problem for a fluid confined within a squarelesure subject to random perturbations in
the temperature distribution at both the horizontal wallsese temperature perturbations are assumed to be narar@aussian
random processes satisfying a prescribed correlatiortitmcBY using the Monte Carlo method we obtain stochasfigrbation
diagrams for the Nusselt number near the classical onsetrviective instability. These diagrams show that randontupeations
render the bifurcation process to convection imperfecggreement with known results. In particular, the pure catido state
does no longer exist, being replaced by a quasi-conductigime. We have observed subcritical arehrly supercriticalquasi-
conduction stable states within the range of Rayleigh nusmBa = 0 — 4000. This suggests that random perturbations in the
temperature distribution at the horizontal walls of theigagan extend the range of stability of quasi-conductiatest beyond the
classical bifurcation poinRa, = 258502. Analysis of the stochastic bifurcation diagrams shdvespgresence of a stochastic drift
phenomenon in the heat transfer fiazent, especially in the transcritical region. Such statieadrift is investigated further by
means of a sensitivity analysis based on functional ANOVéodeposition.

1. Introduction mean temperatures. In particular, we will study the prqtety

) . o problem of a square enclosure having perfectly insulataig |
~ The classical stability theory of RayleigheBard convec-  grq) sidewalls and determine how the random perturbations i
tion in an infinite layer of fluid confined between two hori- {he temperature distributions at the horizontal waifeet the
zontal isothermal walls with constant but unequal tempeeat  gahility and the branch points obtained from classicalibif
predicts that the amplitude of the motion undergoes a BIIC ation analysis. Clearly, when no variations occur alorg th
tion as the Rayleigh number passes through the criticalevalupoyndaries convection is possible only when the Rayleigh-nu
Ra; = 17078 (see, e.g., [1, 2]). Such bifurcation characterizesyer js greater than the classical critical vaRe, = 258502
the transition between a pure conduction state and covecti [6, 5, 13]. However, when random temperature variations do
If the flow is laterally confined by rigid and perfectly instifg  occyr at the horizontal walls, the bifurcation process iegd
sidewalls then the critical Rayleigh number usually inE=R 15 convection becomemperfect[14] and the subcritical pure
[3, 4, 5, 6] due to thestabilizing gfectsof the finite geometry.  conquction state no longer exists, being replaced lyiasi-
Furthermore, if there is small heat transfer through théde-s conductionregime [8]. This type of flow is characterized by a

walls so that the boundary conditions are inconsistent &ith finite - though perhaps small - velocity field and it can be ob-
state of no-motion, then the bifurcation leading to comegct  ¢oned even at low values of Rayleigh numbers.

is, in general, replaced by smooth transitiorto finite ampli- Many important questions can be addressed in the context
tude flow [7]. Such a smooth transition has been also pradlicteqs siochastic thermal convection driven by random boundary
theoretically for thermal convection in an infinite fluid By  congitions. For instance: how do the random temperature per

between two rigid walls with dierent mean temperatures and yhations #ect stability and branch points obtained from clas-
smallspatially periodic perturbations [8]. Since then, a consid gjc5| pifurcation analysis? Is there any connection betvibe

erable researchfirt has focused on examining the stability of gochastic properties of the temperature perturbationsh as
different types of natural convective flows subject to determingqrejation length and amplitude - and flow stability? Isréhe

istic boundary conditions [9, 5, 10, 11, 12]. However, not asy preferential correlation length enhancing the fluid motiod
much work has been done for the case when the boundary coflie heat transfer? Is it possible to obtain realizationstaf s

ditions are random processedfioite amplitudealthough these o supercritical quasi-conduction states? In this papewill

results would bear upon the importance of ignoring uncetyai  ,6yide an answer to all these questions by employing a Monte

when applying classical stability results in real situatipboth =410 numerical approach [15, 16] and ANOVA decomposition
in laboratory experiments and elsewhere. [17, 18, 19, 20].

Thus, the purpose of the present paper is to examine the This paper is organized as follows. In section 2 we formu-
effects of temperature perturbations on the classical Rayleig |aie the governing equations of the system, i.e., the Olokrbe

Bénard stability problem, namely an unstably stratified ﬂ“idBoussinesq approximation to convection via the vortiaians-
contained between two smooth horizontal walls witffedent
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wherey(x,y; w) and T(X,y; w) denote the streamfunction and
the temperature fields whilRa and Pr are the Rayleigh and
the Prandtl numbers, respectively. The variabl@ppearing
in y(x,y; w) andT (X, y; w) identifies a possible outcome of the
T_ i streamfunction and the temperature for a specific reatinaif
= g2(7;w) NPT .
1 the random temperature distributions at the horizontalsval
All the quantities have been made dimensionless by scaling
lengths with the side length of the cavity streamfunction with
the kinematic viscosity, time with L2/v and temperature with
oT 0 oT 0 i g a reference temperaturefidirenceAT,, which is defined to be
ox Ox the diference between the spatial averages of the two temper-
ature processes at the horizontal walls. With this resgatime
Rayleigh and the Prandtl numbers are obtained as

3
Ra= $-AT bV 3)
v o

0 T=1+g¢(z;w) 1 x
whereg, 8 and a are the acceleration of gravity, the isobaric
compressibility cofficient and the thermal flusivity of the
fluid, respectively. We notice, that this type of non-dimens

Figure 1: Schematic of the dimensionless geometry and dimdaes®temper- alization is not éective V\,/hen the average_temperature is the
ature boundary conditions. The random perturbatignandg, are assumed ~Same along the boundaries. Indeed, in this case the reterenc
to be zero mean Gaussian processes. The velocity boundaditioos are of  temperature dierenceAT, becomes 0 but we still could have
no-slip type, i.e.y = 8y//6x = dy/dy = 0 at the solid walls. convection due to temperature variations at the boundary. |
figure 1 we show a sketch of the geometry and the boundary

port equation [21, 22]. In section 3 we characterize theoamd conditions associated with the system (1)-(2). As easignse
temperature perturbations at the horizontal walls of thétga the natural convection problem we are examining is a clabsic
in terms of a Karhunen-Live expansion satisfying a prescribed ©ne, i.e., an incompressible fluid within a square cavitytéwa
Gaussian correlation function. In section 4 we investigate  from below and cooled from above. The sidewalls of the cavity
effects of these perturbations - parametrized in terms of theif'® assumed to be adiabatic while the horizontal walls dve su
correlation length and amplitude - on the onset of convectiv ject to random temperature fluctuations whose rigorous eaath
instability and we determine useful stochastic bifurcatitia- matical definition will be given in the subsequent sectiohe T
grams for the Nusselt number near the onset of convectita-ins Velocity boundary conditions are assumed to be of no-spe ty
bility. The existence of supercritical quasi-conductivates is ~ I-€- d¥/0x = dy/dy = 0 at solid walls. At this point it is conve-
discussed in section 5. By using the ANOVA method in sectiorlient to transform the non-homogeneous temperature boyinda
6 we study the sensitivity of the integrated Nusselt numigrw conditions into homogeneous ones. This is easily achieyed b
respect to variations in the amplitude offérent harmonics ap- defining the new field

pearing in the random temperature distributions at thezioori def

tal walls. This allows us to identify the mosffective spatial ~ T'(XY;w) = T(X Y;w) + (Y- 1) (91 (X w) + 1) -y (X w) ,
frequency enhancing the heat transferfiomnt. Finally, the (4)
main findings and their implications are summarized in secti Whereg: (X; w) and gz (x; w) are random processes satisfying
7. We also include two brief appendices dealing with the-inte adiabatic boundary conditions at= 0 andx = 1, i.e.

gral representation of the Oberbeck-Boussinesq equatinds o0
the description of the ANOVA technique for sensitivity ayal % =
sis, respectively. X Ix=01

for i=12. (5)

Equation (4) can be inverted to give

_ _ _ _ T=T"+1-y)(01+1)+Y. (6)
Let us consider the two-dimensional steady state dimen-
sionless form of the Oberbeck-Boussinesq approximatian vi From Eq. (6) we obtain
the vorticity transport equation in streamfunction-ontyrfiu-

2. Governing equations

lation aT _ oT* N (@ B %) % -
( 2 ) ( 2 ) ox ox ox  ox ] ox
aw VYY) ayd\VY) s aT aT oT*
_a_y ax + & 6y = -Prv lﬁ + RaPr& s (1) a_y = 6y + (gz _ gl) _ 1’ (8)
oy oT oy oT 2 6292 azgl 3291
. T .= V 2 _ 2% _
dyox oxay @ vro= v +y((9x2 (9x2)+ e ()



Finally, a substitution of Egs. (7), (8) and (9) into Egs. &hy
(2), respectively, yields the system

oy d(V) oy 9 (V)

= —Prv*
ay ox ox oy VY
oT* 002 091 01
+RaPr( X +y( X 0x)+ 6x) , (10)
oy (0T* 002 001 091\ 5_lﬁ oT* 3 3
c’)y(ax +y(6x 6x)+ Bx)_ ax( ay +(%2-9) 1)
g 0%01\ m
2+ _
+V°T +y( e 6x2)+ vk
(11)

The boundary conditions associated with Egs. (10) and (El) a
now homogeneous. In Appendix A we obtain the integral rep
resentation of this system in terms of eigenfunctions oppro
eigenvalue problems.

3. Characterization of temperature perturbations at the
horizontal walls

We shall assume that the temperature perturbatiofis w)

where(-) denotes the average with respect to the joint probabil-
ity measure of the variablgsy(w)}. An important question at
this point is: if we arbitrarily prescribe a symmetric auboe-
lation function, sayC*(x, y), can we determine a set of uncor-
related random variableg (w) such that (16) is satisfied? The
answer is obviously firmative, provided the prescribed auto-
correlation satisfies the boundary conditions

KN _o, yyepo.a] (7)
0X  Ix=01
as well as the zero-mean constraint
1
f C*'(x,y)dx=0 Yy e [0,1]. (18)
0

If C*(x,y) does not satisfy such conditions then it is possible
to enforce them through projection. To this end, let us first

‘consider the (positive) Fourier cigients

def
by =

1 1
f f C (% X)pn (X) dn(X)dxdX, nx>1 (19)
o Jo
obtained by projecting the arbitrarily prescribed ker@&(x, x')
onto the basigpy}. This operation basically removes every spa-
tial gradient at the boundarigs= 0 andx = 1 and makes the as-

andg, (x; w) are zero mean random processes satisfying adias_lgned correlation zero spatial mean, in the sense of (1&jt,N

batic boundary conditions at= 0 andx = 1. In order to rep-
resent these processes let us first consider a suitablenortho
mal basis obtained from the Sturm-Liouville eigenvaluebpro
lem [23, 24]

6 o L do(0) _dg(D) _
W+a¢—0, with W—w—o. (12)

The normalized eigenfunctions solving (12) are
do(¥) =1, ¢n(X) = V2cos(mrx) n=1,23.. (13)

Thus, ifh(x; w) is a zero-mean process in [[J satisfying adia-
batic boundary conditions at= 0 andx = 1, then we have the
following spectral representatidfi25]

h(xw) =0 ad@) e , (14)
k=1

whereo is a real parameter that characterizesahglitudeof
the process while

1 1
a(@) = [ h(ca) s dx (15)
0
are uncorrelated random variables. The autocorrelaticthef
procesd (x; w) has the obvious representation

def (h (X, w) h (X'; w))
g

C(xX) = D (@ (N n(X) . (16)
n=1

INote that all the basis functions(x) (exceptgo) integrate to zero and
satisfy adiabatic boundary conditionsxat 0 andx = 1.

3

let us consider the spectral expansion of the ke@idlk, X') in
terms of its (positive) eigenvalugg and eigenfunctiong

C (6 X) = ) A () g (X) - (20)
k=1

A substitution of this expression into (19) immediatelylgie

2\ _ N ! ’
O => A&l | w¢adx . n=1. (21)
k=1 0

At this point it is easy to check that{§(w)} is any set of zero-
mean and uncorrelated random variables with unit variainee (
(€2 = 1) then the process

h(6w) = o D 026 () gk () (22)
k=1

satisfies the boundary conditionsxat 0 andx = 1 as well as
the zero spatial mean constraint and it has the followingecor
lation function

00

C* (. X) = > (0¢n () ¢ (X) .

n=1

(23)

The technique just discussed can be considered as particula

case of thespectral transformation methd@6, 27] where an
assigned correlation kernel is generated by assigningpbe-s
trum relatively to a specified orthogonal basis. In this pape
will employ the following Gaussian correlation functioreés
(28])
(x=x)
l

C"(x,X) = exp[—G (24)
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Figure 2: (a) Relative energy of a truncated Karhunepueoexpansion of the
temperature processes at the horizontal walls as a funcfitimeonumber of
modes retained in the representation fdfetient correlation lengths. We also
show the relative energy cutset at 95% (dashed line). (b) Samples of temper:
ature perturbations at lower and upper horizontal wallscfmrelation lengths

lc =1(--),lc =0.5 (=) andl; = 0.1 (-). The perturbation amplitude here is
set at 5% of the reference temperaturadience.

05 025 01 005 0025 Q01
5 9 22 44 87 199

le | o

M| 1

2 1
2 3
Table 1: Hfects of correlation length on the dimensionality of the terapee

representation at each horizontal boundary. The energyffdstset at 95% of
the total energy of the process.

This allows us to represent the temperature perturbatpasd
g2 shown in figure 1 as

1,2  (25)

M
g (6w) = Y OD"2ED (@ (), i
k=1

where&! (i
lated random variables with unit variance.
will assume thaE,((')
samples of the processes (25) are shown in figure 2 (b) for d
ferent correlation lengthis and perturbation amplitude set at
5% of reference temperaturefidirence between the horizontal
walls. Physically, this means, e.g., a temperature peatioh
with amplitude 1 K for temperature filerences of about 20 K.

1,2; k = 1,2,..,M) are zero-mean uncorre-

In this paper w
are standard Gaussian variables. Severafi,,g of the temperature boundary conditions. The richetgri

of expansion terms for theffective representation of the pro-
cess becomes relatively large. Specifically, since we hawe t
random boundaries, the cake= 0.1 results in a stochastic
system forced by 44 (22 22) random variables (see table 1).
The numerical simulation of these high-dimensional protde
requires appropriate techniques [20, 30, 31, 32, 33, 343Gb,

In this paper we will employ a Monte Carlo method but also
polynomial chaos with adaptive ANOVA can be used [19].

4. Stochastic bifurcations and stability of steady state con-
vection

In previous work [6] we have obtained bifurcation diagrams
for natural convective flows within square cavities subject
uniform temperature boundary conditions. We have observed
the coexistence of multiple stable steady states, in agreem
with other results [12, 11, 10, 9], for the same values of Rigyi
and Prandtl numbers, the final asymptotic state depending on
the initial flow condition. For random boundary conditions,
multiple stable states can still exist but the mechanisnheif t
formation is substantially elierent. Indeed, as we can see from
Egs. (10) and (11), the random perturbatigasandg, break
the symmetry of the system, i.e., the steady-state comvrecti
pattern in general do not satisfy the discrete symmetry grou
described in [6]. Therefore, the symmetry-induced muiltip}
of supercritical states in this case is replaced by a morsipaly
ensemble of flows in a one-to-one correspondence with specifi
boundary and initial conditiods We have identified many dif-
ferent steady-state stable convection patterns and pameling
temperature fields. These includebcriticalandsupercritical
quasi-conduction states for which the kinetic energy ofline
turns out to be very small. In figure 3 we show typical temper-
ture fields and flow patterns corresponding to specificzaali

faf flows associated with random boundary conditions should

be compared with classical results of convection for umifor
temperature distributions (see, e.g., [6, 5]) where only sub-
critical solution (pure conduction) and one supercritisalu-
tion (one-roll pattern) can develop within the range of Régh

We remark that the truncation process in the series expansi, ;mpers considered in this paper, Ra = 0 — 4000.

(25) has to be performed with some care, in such a way that t

he

energy of the neglected modes is negligible. To this end, w§ 1 Bifyrcation diagrams for the Nusselt number

examine the relative energy of the temperature perturbatio

def Ef (M)

JUS =2 =

M
where Ef(M)_Zmﬁ) (26)
n=1

and choose the total number of terisn such a way thag; is
greater than a specifieuitgf value In figure 2 (a) we show the
plots ofe; (M) corresponding to diierent dimensionless corre-
lation lengths while in table 1 we report on the dimensidgali
M - i.e. the total number of terms - of the spectral represent

As is well known, a sudden change in the slope the Nus-
selt number versus the Rayleigh number usually identifies a
transition between elierent flow states. In the particular case
of uniform temperature boundary conditions the first one of
these transitions characterizes the onset of convectstabii-
ity [12, 5] and, for the geometry shown in figure 1, it can be
clearly identified aRa, = 258502. However, in the presence
of random temperature perturbations along the horizonglsw

agf the cavity, the precise determination of the critical Régh

tion (25) for a 95% cutfi threshold. We notice that as the cor-

relation length goes to zero the temperature perturbationea
boundaries approaches an independent increment pro&jss [
Even for temperature perturbations having correlatiogieh,

about 01 (scaled on the side length of the cavity) the numbe

4

2We remark that for very specific realizations of the tempemprocesses
2at the horizontal walls, convection can still satisfy theodéte symmetry group
described in [6]. However, from a statistical viewpoint firebability that this
Ihappens is zero.
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Figure 3: Typical temperature fields (top row) and streamliofethe velocity field superimposed to the modulus of velocioygr row) for specific realizations
of the temperature distribution at the horizontal walls o ttavity. The amplitude of the temperature perturbations ias8% of the reference temperature
difference while the correlation lengthlis= 0.1 (a),lc = 0.5 (b)Ic = 0.25 (c). Show are: (a) aubcritical quasi-conduction state Ba = 1946, (b) asupercritical
quasi-conduction stafea= 2650 and (c) a fully developed one-roll convection pattérRa= 3500.

number can be ratherftlicult. In fact, as pointed out by Ahlers I = 1 andl; = 0.5 are very similar. This can be explained
et al. in [14], such perturbations render the bifurcation pro- by noting that the temperature perturbations at the hotaon
cess to convectioimperfectand, strictly speaking, a critical walls of the cavity are quite similar to each other in thessesa
Rayleigh number does not exist in the usual sense since cofsee figure 2 (b)). Among many possible convection patterns,
vection occurs foall values ofRa However, as the Rayleigh our numerical results show that it is possible to obtainizaal
number approaches the classical critical value, the aung@ibf ~ tions of nearly supercritical(stable) quasi-conduction states.
convection increases greatly, and therefore it still maarse In other words, it seems that random perturbations can-stabi

to define a “critical” regime near the classical bifurcatmrint.  lize the quasi-conduction state beyond the classical dation
In figure 4 we show the bifurcation diagrams for the inte- point. This rather surprising result will be discussedHertin
grated Nusselt number the next section.
1 . .. .
aT(XY;
Nu(w) % f (%Y, w) dx 27) 4.2. SFatlstlcaI analysis of the heat _tr_ansfer _ _
0 ay -0 In figure 5 (a) we plot the probability density function of the

integrated Nusselt number at Rayleigh number 3600 0.7)

versus the Rayleigh number. These diagrams are obtained l?é’r boundary perturbations with filerent correlation lengths.

Ilrs':;f?mpll?g t?te ts n:_p eraturel_ijlztnbutlgn at thle thOfI?bV\fat::S Each probability density is estimated througham-parametric
or dittérent perturbation amplitudes and correlation Iengtns ang ey o regression method based on the available temperatur

then compute the correspondisigible convective flow through samples. Specifically, we have computed 6w samples at

the Galerkin method outlined in Appendix A. In the plots of many diferent Rayleigh numbers, correlation lengths and per-

gggre 4 Wf. als'cf) mdgde t:e class(;c;?I b|fu(;catr|10ré Ic#mgran_r;f:‘p turbation amplitudes of boundary processes. As seen from fig
eterministiauniform boundary conditions (dashed lines). This ure 5 (a), random temperature perturbations can increage-or

case corresponds tg = co. Note tha_t the b_|furcat|on QIagrams crease the averaged heat transfer relatively to the unitase.
obtained for temperature perturbations with correlatiemgiths Ina mean sense, however, it turns out that the heat trasséer i

hanced, especially in the transcritical region (see figlr&bn-

3We report only orstablesteady states. Othenstablestates are presentas llarly, i_n figure 5 (b), we plot the prObfibi"ty den_Sity funchs
well but these are not shown in figure 4. of the integrated Nusselt number affdrent Rayleigh numbers
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Figure 5: (a) Probability density functions of the integ@@Nusselt number at  Figure 6: (a) Mean of the integrated Nusselt number versuR#yeigh num-
Rayleigh numbeRa = 3000 for boundary perturbations offtlirent correlation  ber for boundary perturbations offtérent correlation lengths. The perturba-
lengths. The perturbation amplitude is set at 5% of the refarédemperature  tion amplitude is set at 5% of the reference temperatufergince in all cases.

difference. The vertical line indicates the deterministic Niassenmber atRa= We see that random temperature perturbations indus®chastic driftphe-
3000 for uniform boundary conditions. (b) Probability dign$unctions of the nomenon in the transcritical region. (b) Integrated Nusseihber versus the
integrated Nusselt number atfidirent Rayleigh numbersRa = 1000 -), dimensionless kinetic energg.{ of the fluid at Prandtl number.D. The am-

Ra = 2500 (--), Ra = 3000 ) andRa = 4000 ¢ - —). The temperature plitude of the boundary perturbations is set at 5% and theetadion length

perturbations have correlation lendth= 0.5 and amplituder set at 5% of the islc = 1. We show the mean () and the min-max band-{ which is

reference temperatureftrence. parametrized with the Rayleigh numb@a. The curves at constaita (——)
are simple lines due to the very high correlationfticéent betweerNu ande.
at Prandtl number.@.

for boundary perturbations with correlation lendgth= 0.5 and
amplitudeo set at 5% of the reference temperaturedence.
We notice that aRa = 1000 the probability density dflu is
rather peaked aroundu = 1, suggesting a high probability
of quasi-conduction regime. In the transcritical regionalso
observe a variation of the probability density functionttha-
comes approximately Gaussian when convection is fully deve
oped.

Note that for supercritical flows, the probability densitly o

the horizontal walls has an influence on the averaged hewst-tra
fer within the cavity. To this end we examine the case whege th
perturbation amplitude is set at 5% of the reference tentpera
difference. The results of our computations are shown in figure
6 (a). As easily seen, random temperature perturbationsd

a stochastic driftin the transcritical region yielding to an in-
crement of the average heat flow. This increment depends on

the intearated Nusselt numberdentinuously suoportedThis the correlation length of the temperature processes, hetet
Integ u u Inuously supp : are preferential values of temperature correlation lesidkiat

suggests that for the correlation lengths and the pertiarbat .trigger convection patterns that are mofkeetive for what con-

amplitudes considered in this paper it seems that thera €XI2ems the heat transfer. Note, however, that the heat &ansf

onl:yﬂone :oos?;]ble supderc?tlc?rl] convecltl?_n plattertr;{ |.et!:;]na- enhancement is rather weak in all cases we have considered,
,:O b (t)'W. no I_terdwor S(’j t(r)]r N correfellqlonl fanhg S, b rpe quantifiable in approximately 10% within the transcriticat
urbation amplitudes and the range of kayleigh numbers Cong]ion. Also, when convection is fully developed the stochas-

S|d§red n thlsdpgper the insethle of .Stfﬁ:e flows '? com]fzuo tic drift disappears and the probability density of the grtged
and composed by one-rofl patterns, wi € exceplion 01&s0Mysselt number becomes very similar to a Gaussian disimitout

subcritical quasi-conduction states. Next, we deterntieeal/- see figure 5 (b))

erage as well as the range of the intggrated Nusselt n_umlae_r aé It is interesting to study the relation between the intezptat
func_:lf|;)hn of the lR?er:gh ntl;]m??r: 1;h|s studty helpsrtjs n t_yatn Nusselt number and the dimensionless kinetic energy of the
ing if the correlation length of the temperature perturatiat g, 4 in more detail. Our first finding is that the correlatioe-



ficient between these two quantities is approximately oradlin
cases we have considered in this paper. This suggests ¢nat th
exists a linear relation between the Nusselt number andrdime
sionless kinetic energy for stochastic convection witljnare
cavities at fixed Rayleigh number Prandtl numiper = 0.7.
This relation is shown in figure 6 (b) where we plot the inte-
grated Nusselt number versus the kinetic energy of the ftuid f
different Rayleigh numbers. The existence of a linear relation
between the integrated Nusselt number and the dimensgnles
kinetic energy implies that heat transfer is primarily detimed

by advection, even in the quasi-conduction regime.

5. Subcritical and supercritical quasi-conduction states

The existence of subcritical quasi-conduction states bas b
theoretically predicted by Kelly & Pal in [8] for an infinitayer
of fluid with small periodic temperature variations at tha-ho
izontal walls. By means of perturbation analysis, they have
found that convection can occur even for Rayleigh numbess le
than the critical oneRa, = 1707.8 for the infinite layer). The
corresponding Nusselt number in this case is a function®f th
Rayleigh number, the Prandtl number and the modulation am-
plitude. The perturbation approach of Kelly & Pal, however,
cannot be easily extended to the present flow problem because
the random boundary conditions depend on many variables (se

@)

table 1) and it is not easy to select a significant perturbgta
rameter quantifying the “amplitude of convectidn’A criterion

to identify a quasi-conduction state may be based on theg-anal
sis of the dimensionless temperature field within the cavity
particular, a comparison between the pure conductionisolut
and the convection solution can reveal if there is a sigmifica

1.8
1.6 e
14
2, L
1.2}
1 T Ra,
0 1000 2000 3000 4000
Ra
(b)
1.1
1.08}
1.06|
=1.04}
1.02 @M -
pmmm=s Ra, qua G ducaon
states
2500 2600 2700 2800
Ra

Figure 7: Threshold criterion for the identification of qgisaenduction states.
These diagrams refer to the case where the boundary perambdtave cor-
relation lengthlc = 0.5 and perturbation amplitude set at 5% of the reference

temperature transport associated with the fluid motion. Th%mperature dierence. We show the mean Nusselt numbgr the minimum

steady state pure conduction solution can be easily olatdipe

integrating the Poisson’s equation
g %91\ o

VZT* - _ _ _
y( ) X2

X2 Ox? (28)
with homogeneous boundary conditiofis = O at the horizon-
tal walls anddT*/9x = 0O at the sidewalls of the cavity). Equa-
tion (28) follows from Eq. (2) by setting = 0. The analytical
solution to (28) can be represented in terms of an eigenfumct
expansion as

00

T (Ryw)=

k=1

I CS N :
7_ifofosf(x,y)mx,y)dxoly,

(29)
where

2 2 2
a§12_591)+391 (30)

Fxy) = y( X2 ox? ox2

4From a theoretical viewpoint, a supercritical stable statght be inves-
tigated by analyzing the Oberbeck-Boussinesq system, irgprngsentation.
In particular, one can consider the integral representaifttained in appendix
A, expand the solution nea = 0 andby = 0 and try to determine whether
there exist a set of cdigcients for which the real part of the largest Jacobian
eigenvalue is negative. This leads to a complex relation éetwthe forcing
(buoyancy) term in the Navier-Stokes equations and thedfgtynumber.

and the maximum Nusselt numbers<) and the classical bifurcation diagram
(---) obtained for spatially-uniform deterministic boundannddions. Figure
(b) is a zoom-in of figure (a).

In these equationyﬁ andTIx denote the eigenvalues and the
eigenfunctions of the Helmholtz operator, respectivebe(8p-
pendix A.1 for further details). Finally, the temperatureldi
associated with the pure conduction state corresponditigeto
perturbationg; (X; w) and g2(X; w) is obtained by substituting
Eqg. (29) into Eqg. (6). A simpler criterion to identify a quasi
conduction regime is based on the integrated Nusselt nuitaber
self. In practice, we can define a threshold farbelow which
we can state that convection is neglectable. At Prandtl rumb
0.7, this is equivalent to selecting a threshold for the dimen-
sionless kinetic energy of the fluid. In fact, as we have @aint
out in the previous section, the integrated Nusselt numbdr a
the dimensionless kinetic energy of the fluid are extremedil w
correlated in all cases we have considered in this paper. The
selection of a threshold value for the integrated Nusseath-nu
ber, however, introduces some arbitrariness in the defmibif
quasi-conduction states. This arbitrariness is of the daype
as that of defining a critical Rayleigh number in the presafice
random boundary conditions.

Given these remarks, let us set the threshdlg = 1.02



ber of quasi-conduction states, i.e. the states whose ¥nerg
is within the quasi-conduction energy band, for each Rghlei
number. As easily seen, the probability curve is monotonit a

it reaches the value zero (impossible event) approximately
Ra =~ 2800 in all cases. We also notice that the occurrence of
a nearly supercritical quasi-conduction state is rathdikety
(see figure 8 (b)) and it depends on the correlation lengthef t
temperature perturbations at the horizontal walls. Inipast

lar, smaller correlation lengths yield to higher probat@b of

0 supercritical quasi-conduction states. Clearly, all ¢hessults
0 1000 2000 3000 4000 depend on the choice of the quasi-conduction energy band. In
b other words, a dierent selection of the threshold for the Nusselt
o1 (0) number or the kinetic energy of the fluid yields quantitdiive
' different but quantitatively similar conclusions.
0.08
0.06 6. Sengitivity analysis
l004 In this section we employ the ANOVA technique [20, 17,
' 37, 38, 32] (see also appendix B) in order to quantify which
0.02 harmonic in the Fourier series representation of the random
) temperature boundary conditions enhances the heat tramsfe
200 2600 2700 2800 triggers the transition from quasi-conduction to fully é&ped

Ra convection regimes. This sensitivity study allows us to enak
inferences about the most important unstable modes and, in

Figure 8: Probability that a stable quasi-conduction stieteelops within the  some sense, it is similar to the perturbation approach adopt

cavity as a function of the Rayleigh number and the correfaiémgth of the by Kelly & Pal [8] for the infinite fluid layer.

temperature processes at the horizontal walls of the caVike perturbation . :
amplitude is set at 5% of the reference temperatufierdince. Figure (b) is a Let us consider an ANOVA expansion of the Nusselt num-

zoom-in of figure (a). ber in terms of the set of random variables representinguthie
plitude of boundary conditions

for quasi-conduction states. This choice is based on audaref 2m 2Mm
analysis of the temperature fields of many flow samples corre- Nu({) =Nw + Z Nu (&) + Z Nu;(&i. ¢j)
sponding to dierent realizations of boundary conditions. It is i=1 i<j

clear that the thresholdu, = 1.02 discriminates among those 2m
flows with heat transfer dierent at most by 2% with respect + Z NUjk (s ¢jo &) + -+ s (31)
to pure conduction. In figure 7 we sketch the procedure for i<j<k

the identification of quasi conduction-states accordinghe
proposed criterion. Clearly, the threshaldy, = 1.02 is also é,d:ef [V D D L) (32)
associated with a quasi-conduction kinetic energy band. An N L
analysis of the stochastic flow field near the onset of convecWe recall thatM depends on the spatial correlation length of
tion reveals that random temperature perturbations at ¢ire h the temperature process. Specifically, lfoe 0.5 - which is the
izontal boundaries can stabilizerearly supercriticalquasi- case we examine here - we obtain a total number of 10%p
conduction regime. This region is indicated in figure 7 (k) fo random variables. In other words, theminal dimensiofi32]
boundary perturbations having correlation lenfit= 0.5 and  of the parameter space here is 10 (see table 1).
perturbation amplitude set at 5% of the reference temperatu  The sensitivity (in the sense of Sobol [39]) of the integdate
difference. Thus, random perturbations basically extend the ddNusselt number with respect to the amplitude of the boundary
main of stability of quasi-conduction states beyond thegsita modes can be studied as a function of the Rayleigh number.
cal bifurcation point. The flow field and the temperature of aThis provides an insight, e.g., on which harmonic of the temp
supercritical quasi-conduction state is shown in figure)3atb  ature distribution at the boundaries (first-order inte@agt or
Rayleigh number 2650. An important question at this pointcombination of harmonics (higher-order interactions) raest
is: What is the probability that a supercritical stable quasi- important in the transition from quasi-conduction to futle-
conduction state develops within the cavity? veloped convection. The results of this study are summarize
In order to answer this question, in figure 8 we plot thein figure 9 where we plot the averaged global sensitivitydest
probability of occurrence of quasi-conduction states imithe  for first-, second- and third-order interaction terms cep@nd-
whole range of Rayleigh number considered in this paper, foing to all five parameterf[l), ...,gél)] defining the random tem-
boundary perturbations of fierent correlation lengths. This perature process at the lower horizontal wall. These Seitgit
probability function is estimated by counting the relatiuem-

where
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Figure 9: Averaged global sensitivity indices offdrent terms in the ANOVA

decomposition of the Nusselt number for variations in the anddi of the har-
monics representing the temperature boundary conditioredbter horizontal
wall. Shown are sensitivities of (a) first-order, (b) secamder and (c) third-

order interaction terms versus the Rayleigh number. Theoartiashed line
identifies the classical bifurcation pointR&. = 2585 . It is seen that the tran-
sition from quasi-conduction states to fully developedvemtion is captured
by the second- and the third-order interaction terms. Alse Highest sensitiv-

ity of Nuwithin the transcritical region is achieved by the variablanber “1”.

This variable characterizes the amplitude of the lowestueagy mode in the

Fourier expansion of the temperature boundary conditien, ¢osfx). Thus,

the heat transfer enhancement in the transcritical regienttie stochastic drift)

is mainly influenced by such harmonic.
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factors are explicitly defined as

(1) det o*[NU]

T o2[Nu (33)

(2) def O'Z[NUJ]

4= ZJI PN (34)
o 2 NU:

z® d:fz O'O—[Z[I\Lliljl](] ’ (35)

ik

whereNu, Nu; andNuj are the interaction terms in Eq. (31)
while 0[] denotes the variance operator (see Appendix B for
further details).

As seen from the plots &t (k = 1,2,3), the subcritical
quasi-conduction regiorR@ < Ra,) is sensitive to variation in
the amplitude of all the boundary modes. Beyond the classica
bifurcation point we also see that there is transcriticgioe
(betweenRa ~ 2700 andRa ~ 3000) which is very sensitive
to variations in the amplitude of the first boundary mode, i.e
cos{rx). We recall that this is the region where we have the
stochastic drift phenomenon for the Nusselt number (see sec
tion 4.2). Therefore, we can conclude that the average heat
transfer enhancement in the transcritical region is dueltova
frequency boundary mode.

Note that the global sensitivity indices associated witn th
first-order interaction terms do no allow us to identify thanfl
transition in a clear manner. This objective is achievecéu
by looking at the higher-order interaction terms. In fastsaen
from figure 9(b) and figure 9(c) the global sensitivity fastor
of second- and third-order interactions terms undergo a sud
den jump exactly in correspondence with the classical b#ur
tion point. This suggests that the interaction betwedfeidint
boundary modes is switched on by the transition and thetresul
ing flow becomes rather sensitive to variations in the amgét
of the terms associated with the corresponding harmonias. W
also notice that there is a bulk phenomenon in the sengitivit
factors within the region of fully developed convectiom. ifor
Ra> 3000. This suggests that in such region the Nusselt num-
ber is equally sensitive to variations in the amplitude dfedi
ent harmonics of the temperature expansion at the lower wall
This is expected since the heat transfer in the fully dewdop
convection region in primarily determined by advection.

7. Summary

We have studied the RayleigheBard stability problem for
fluid confined within a square enclosure subject to non-umifo
random perturbations in the temperature distribution attbr-
izontal walls. These temperature perturbations were nhedel
as Gaussian processes satisfying a Gaussian correlation fu
tion. We have simulated the Oberbeck-Boussinesq equations
and computed many ensembles of realizations of the natural
convective flow within the cavity by sampling the temperatur
processes at the boundaries foffglient correlation length and
amplitude. This allowed us to obtain stochastic bifuraatio
agrams for the integrated Nusselt number near the clagsical
set of convective instability. These diagrams show thatoam



perturbations render the bifurcation process to convadtio —anbmEnmk — an (Frk + Pri) — ykbk + My = (39)

perfect, in agreement with known theoretical results [1H4].

particular, the pure conduction state does no longer ebxasibg

replaced by a quasi-conduction regime. We have observed sub def fl fl[ (692 891) Bgl]
- i i ) Nk = —— - Ydxdy,

critical andnearly supercriticalquasi-conduction stable states ox  ox

within the range of Rayleigh humbeRa = 0 — 4000. This - ) )

suggests that random temperature perturbations at theomeri M d:eff f [y(a % 0 91) gl]r dxdy,

tal walls can extend the range of stability of quasi-conidunct Xz oxt]  oxt

states beyond the classical bifurcation point. Howeverptiob-

ability that these states develop within the cavity is rathe. def f . f ! V2T f f v4
A statistical analysis of the bifurcation diagrams neardtas- FAnkc = Unindxdy. o ynielxdy,

sical onset of convection shows the existence of a stochasti def tﬁn
D & f f —wkdxdy, f f
0

where the cofficientsN,,, M, etc., are defined as

drift phenomenon in the heat transfer @ogent, especially in Frk = X [dxdy,
the transcritical region. The increment we have observed in

the mean Nusselt number is about 10% for temperature pertur-

bations having a correlation length comparable with the-sid P d_eff f [a‘!’” ( (@ _ %) n %)
length of the cavity. In order to obtain a better understagdif ax X ax
this phenomenon, we have performed a sensitivity analyfsis o Un _

the integrated Nusselt number based on the functional ANOVA _W (92 - 91)} Idxdy,
decomposition. This allowed us to identify which harmoriics

the random temperature distributions at the horizontalsiak

most dfective in enhancing the heat transfer fimgent. The Brmk def fl fl(alﬂn OVYm _ On OV lﬁm)w dxdy,
sensitivity factors corresponding to first-, second- aniddth gy  ox Ix

order interaction terms suggest that the lowest-wavelehgt- def (F (H(0UndTm  Onlm

monic is the mostféective. In addition, the flow transition from Snmk = f f ( ay ax  ox dy )F dxdy.

quasi-conduction to fully developed convection is found&o

accurately captured by the second- and the third-orderadote  Also, yZ denote the eigenvalues of the Helmholtz equation (see

tion terms. Appendix A.1). The nonlinear system (38)-(39) can be solved

numerically with accuracy in order to obtain the Fourierftiee

cientsa,(w) andbm(w) for each realization of the boundary con-

ditions. Once these céiicients are available, the streamfunc-
This work was supported by OSD-MURI grant FA9550- tion and the temperature fields may be easily recovered from

09-1-0613, DOE grant DE-FG02-07ER25818 and NSF gran{36) and (37).

DMS-0915077.
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A.l. Temperature expansion

A. Integral representations We consider an eigenfunction expansion based on a classi-
cal diffusion problem in Cartesian coordinates
Let us consider an expansion of random temperature and

velocity fields in terms of normalized eigenfunctiopg(x, y) VAT +9%T* =0 (40)

in 5
andl'm (x,Y) with homogeneous boundary conditions

N
y _ aT*(0, aT*(1,
BOYi0) = D a0 (@) T (%) @  Tx0=Try=TONITEN o
n=1
N _ A separation of variables in Eq. (40) gives the following two
T (XY, w) = Z bm (W) Tm (X Y) . (37)  Sturm-Liouville problems
i X dX(©) _ dX(1)

The advantage of using such representations is that they au- —— +a’X=0, ——=—""=0, (42)
. ; " dx dx dx

tomatically satisfy all the boundary conditions as well s t a2y

continuity equation [40, 21]. A substitution of Eq. (36) and

Eg. (37) into (10)-(11) and subsequent Galerkin projectioto dy?

Yk and Ty, respectively, gives the following system of alge- whose solutions are the well known [23, 24] normalized eigen

braic equations (repeated indices are summed unless asieerw functions

+b?’Y=0, Y0 =Y()=0, (43)

stated) .
X 1 ifn=0 44
anamBnmk — PranCnk + RaPr(bnDnk + i) = 0, (38) () = \/é cos(ntx) ifn=123,.. (44)
5These functions are obtained in Appendices A.1 and A.2 Ym(Y) = \/é sin(mry) m=1,23,... (45)
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while the eigenvalues are

a,=mn for n=012,.., (46)
bp=mm for m=12 ... 47

This implies that the eigenvalues of (40) are
Yin = 1 (n2 + rT12) . (48)

Thus, the two-dimensional temperature basis function @n
written as

Tn (% Y) = XimX)Yjm ). (49)

wherei(n) and j(n) are suitable subsequences obtained accor

ing an ordering of;.

A.2. Velocity expansion
All the velocity boundary conditions are of no-slip type

This mean®y//ox = oy /0y = 0 everywhere at the boundary.

In order to generate a divergence free basis for the veloejty
resentation satisfying such boundary conditions it is eoment
to consider the following eigenvalue problem [40, 41, 27}, 12

oy 0ty

—_— —_—— 4
oxt - oxt A (50)
_ W _ _% _
Y(x,0) = o 0, Yy(x 1) = I 0, (51)
_ oy _ 0y
¥(0,y) = y 0, v(0,y) = y 0. (52)

This eigenvalue problem is symmeftiand separable. A sub-
stitution of the ansatz

w(xy) = X(9Y()

into (50) yields two equivalent eigenvalue problems ¥{K)
andY(y) in the form

(53)

d*X

Fv a*X, (54)
X(0) = X(1) = %E(O) = %ﬁf) =0. (55)

The general integral of (54) is easily founals

X(x) = asin(ax) + bcos(ax) + csinh(ax) + d cosh(ax) .

By enforcing the boundary conditions (55) we obtain the fol-

lowing normalized set of eigenfunctions

cos[a; (x—1/2)] / cos[ai/2] —

cosha; (x—1/2)] / cosh[a;/2] i=135,..
Xi(x) =

sin[a; (x—1/2)] / sin[«;i/2] —

sinh[a; (X — 1/2)] / sinh[ai/2] i=246,..

6The spectral theory for linear operators in a Hilbert spagarantees that
the eigenfunction set is th@omplete

“It is sufficient to consider a solution in the ford(x) = €”* to obtain, by
substitutiony® = o, i.e.,y = {a, -, i, —ia}

where the eigenvalues; are solutions of the transcendental
equation

A similar solution can be obtained f¥i(y). A normalized basis
for the two-dimensional streamfunction can be obtained as a

btensor product of one-dimensional bases as

fori=1,3,5,...
fori =2,4,6,...

—tan(ai/2)
tan(a;i/2)

@

5 (56)

tan h(

Un (% Y) = Xigy Q) Yigy ) » (57)

wherei(n) and j(n) are suitable subsequences obtained accord-

Ing to an eigenvalue ordering

A= a;‘(n) + ﬁj‘(n) ) (58)

" B. ANOVA decomposition for sensitivity analysis

The key idea of ANOVA is to represent a high-dimensional
function f(xg, X, - - - , Xy) in terms of a superimposition of func-
tions involving a lower number of variables (interactiomts),
and then truncate the series at specific interaction orgercis
ically, the ANOVA expansion of ai-dimensional scalar func-
tion f takes the form [42]

N
2 fii (% %)

i<j

N
f(Xl’ XZ, eeey XN) =f0 + Z fI(X|) +
i=1

N
+ Z i (X, X, %) + -+

i<j<k

(59)

The functionfy is a constant. The function(x;), which we
shall call first-order interactions, give the overaffexts of the
variablesx; in f as if they were acting independently of the
other input variables. The functiorfg(x;, x;) describe the in-
teraction éfects of the variables; and x;, and therefore they
will be called second-order interactions. Similarly, hégtorder
terms reflect the cooperativéfects of an increasing number of
variables. From a practical viewpoint, the computationhsf t
various terms in the ANOVA expansion can be performed by se-
lecting a suitable measure space, e.g., the spagéraégrable
functions in the hypercube [@]", whereu denotes an integra-
tion measure. In this case we have

1 1
fo:ﬁ j; f(Xl,,,.,XN)dﬂ(Xl,...,XN), (60)

1 1
() = f f (Xt o Xty Xty o X
0 0

d/,l(Xj_, woes XimLy Xitds oees XN) - fO s (61)
For instance, if the measugeis selected as
N
du(x, ... xn) = | | dx (62)
i=1
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then we obtain the classical ANOVA-HDMR method [20]. Sim-
ilarly, if we set

(3]
[4]

N
duCa, ) = [ [ox—c)dx, celo,1] (63 D
i=1

[6]
(7]

then we obtain the so-callethchoredANOVA [43] decompo-
sition. The vectord;, ...,cy) in this case is known aanchor
pointand it can be selected according to manffedent crite-
ria (see, e.g., [18]). The ANOVA representation of a field can ]
be dfectively used as a tool for sensitivity analysis [39, 44].
To this end, let us first recall that all the interaction tei(®),

(61), etc., in the ANOVA expansion (59) are mutually orthego (9]
nal with respect to the measyreThis implies that the variance
of f, here denote as?[f] is simply the sum of the variances

[10]
associated with each interaction term, i.e.,
N N [11]
o?[f] = Y i+ D o [hl+ -, (64)
i=1 i<j [12]
where )
o] L f fzdu—( f fd,u) . (65) [13]

The integrals appearing in Eqg. (64) can be computed by using %4]
multi-element quadrature formula [32]. Following Sobo®[3  [15]
we shall define global sensitivity indices as the ratio betwe

the variance of each term in the ANOVA decomposition andé!
the total variance of the functiofy i.e.,

[17]
2 2r s
det o[ ] . def O [fi]
Rl - 0_2[1;] ’ RH - 0_2[1:] ) (66) [18]
From Eq. (64) it easily follows that 9]
N N
ZR+ZRJ+---:1. 67 o

i=1 i<j
Moreover, we shall define the following averaged global sens 13
tivity indices

def def def 22
ZVER, ZPT ) R 29T ) Ry .
] i

(68)

. o - [23]
representing the relative importance of one specific paf@me [24]

overall the others at a prescribed interaction level. Whghaid  [25]
of Egs. (68) we can study which input variable has more in-

. 26]
fluence on the response of the system. For instance, we cén

quantify which harmonic in the Fourier series represeatatif  [27]
the random temperature boundary conditions triggers tire tr
sition from quasi-conduction to convection dfexts the heat (28]
transfer cofficient to the greatest extent.
[29]
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